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BACKPROPAGATION AIDED LOGO GENERATION USING
GENERATIVE ADVERSARIAL NETWORKS

Mihai Dogariu1, Hervé Le Borgne2, Bogdan Ionescu3

Logo detection algorithms rely on comprehensive datasets in order
to achieve a high precision. The scarcity of these resources represents the
motivation to augment them through artificial logo generation. In this pa-
per, we propose a logo dataset augmentation technique that leverages the
generalization power of generative adversarial networks (GANs). We train
a GAN on a highly complex dataset formed of single logo instances such that
we are able to generate random logos. Then, by applying deep gradient back-
propagation, we manage to reconstruct very specific logos with this model.
We validate our approach by replacing original logos from in-the-wild im-
ages with their reconstructed versions and running logo detection algorithms
on the newly created images.

Keywords: Logo generation, Generative Adversarial Networks, Gradient
backpropagation

1. Introduction

In recent years, the multimedia field has seen a surge in the amount of me-
dia content creation and distribution across all channels. Consumer behaviour
has migrated more and more towards visual content, due to increasingly ac-
cessible media platforms, backed by larger smart devices outreach. Industries
of all sorts have noticed this and have started to address the public via these
channels. Consequently, product advertising has gained a fair share of atten-
tion. Thus, companies are interested in promoting their products and that is
usually done either by directly inserting their products in the media content (if
that is a viable approach), e.g., specific car brands in movies, or by inserting
the company’s logo in the content, if they are focused on less physically tangi-
ble products, such as software companies. In return, it became of high interest
to be able to analyze automatically a stream of images or videos and detect all
logos in that content, in particular on social media. Such a content analysis
can feed marketing reports to estimate the visibility of a brand within a par-
ticular sector. This strengthens the necessity for marketing research teams to
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use logo detection software at a large scale, that is to say for a large number
of logos, that are present in a large variety of visual context.

Logo detection is, in fact, an application of object detection, which is a
field that reached its maturity. Relevant object detection papers are usually
classified in single-stage detectors and two-stage detectors. The first category
is composed of popular network architectures such as YOLO [1] (with its vari-
ants), SSD [2], and, more recently, RetinaNet [3]. These are composed of
a single end-to-end deep network which performs both object detection and
recognition. The second category is represented by architectures such as the R-
CNN family (R-CNN [4], Fast R-CNN [5], Faster R-CNN [6], Mask R-CNN [7]),
where there are two stages: first, a region proposal stage, and second, a recog-
nition stage. Two-stage detectors have traditionally obtained better object
detection results, but at the expense of more complex algorithms that require
larger computation time, as opposed to their single-stage counterparts.

Another important aspect of logo detection is the dataset that is used to
train the detector. Object detectors are usually trained on large enough and
thoroughly annotated datasets, e.g., MS-COCO [8], Google Open Images [9],
and this gives them enough robustness. Logo detection, however, is poorly
represented, with only a few datasets available for detection, such as QMUL-
OpenLogo [10], FlickrLogos-27 [11] or FlickrLogos-47 [14]. Additionally, there
are WebLogo-2M [15], a weakly labelled (at image level) dataset which does
not provide bounding boxes for the logos, and Large Logo Dataset (LLD) [16],
a dataset consisting only of digitally represented logos and not in-the-wild
instances.

As logo datasets are a scarce resource, our work aims to alleviate this
problem by augmenting already existing datasets with synthetically generated
logos. We propose to synthesize logos via Generative Adversarial Networks
(GANs) [17]. In order to generate specific logos we propose to start from
the desired logo, retrieve the latent vector that generates that logo through
gradient backpropagation, and slightly alter it such that we obtain different
instances of a given sample. Finally, we test our newly generated images on a
logo detection task.

The rest of this paper is organized as follows. In Section 2 we discuss the
process of logo generation, in Section 3 we give the mathematical insight for
retrieving the latent vector that generates particular images through gradient
backpropagation, in Section 4 we validate our approach on a logo detection
framework, and we conclude and discuss future work in Section 5.

2. Logo Generation

The main idea of this paper revolves around the process of logo gener-
ation. This is done with the help of a GAN architecture, which has proved
to be a successful way of generating images with various other content, such
as human faces, landscapes, animals, paintings, etc. For this precise task we
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adopted the DCGAN [18] network, as it is one of the most popular architec-
tures for sample generation.

It is also known that GANs require datasets with particular properties
for training, in the sense that the training samples must have similar properties
(content, lightning, textures, color, structure) if sharp images are desired. If
the training dataset is too diverse, then it is likely to obtain blurry or absurd
images. Since there are not many logo datasets freely available, we decided
to use the LLD, which contains pristine brand logos. The advantage of this
dataset is that each logo is clearly represented, undistorted, exactly how it was
digitally designed to begin with, on a white background (if any background
is visible). This ensures that all images have a frontal pose and are of good
quality, as opposed to in-the-wild logos, which usually contain significant noise
(occlusions, blur, distortion, skewness, etc.). The disadvantage, however, is
that each brand logo appears only once in the dataset, so there is no variety
with respect to individual brands.

The LLD dataset consists of roughly 123k logos crawled from the Inter-
net. These logos come in different sizes, therefore the first step was to resize
each logo such that their larger side would become 108 pixels. Since DC-
GAN’s discriminator accepts a fixed size input, we padded LLD’s logos with
white background where it was required, so as to obtain 108× 108 pixel logos.
This dataset will henceforth be referred to as “LLD” in the remainder of the
paper.

Furthermore, we extracted each annotated logo from the Flickr 47 dataset
and applied a processing similar to the one on LLD for each sample, i.e., re-
shaped and padded logos to obtain the 108 × 108 dimension with the help of
the precise mask annotations that the dataset comes with, as seen in Figure 1.
This produces around 2k logos, with an average of 42 instances for each of the
47 classes. However, this is not enough for GANs to produce high quality im-
ages. Therefore, we extend this dataset by copying its elements until it reaches
the same size as LLD and then we mix them together to obtain a dataset that
we will name “LLD Flickr 47”, of approximately 246k logos. Additionally, we
scraped from the Internet the representative logo for each class in original for-
mat (not in-the-wild). We also copied these 47 logos to reach a 123k dataset
size named “synth” and added them to the LLD dataset to form a new dataset
“LLD synth”.

We trained several DCGAN models on LLD under different parameter
setups. Namely, we used different batch sizes (64 or 128), learning rates (1e−
03, 2e − 04, 1e − 04, 1e − 05), number of Generator passes for each iteration
(nG), number of Discriminator passes for each iteration (nD), with or without
batch normalization. The motivation behind using nG or nD greater than 1 is
that repeated Generator/Discriminator passes on the same batch should offer
higher quality results due to batch normalization layers’ better stabilization
around the batch mean.
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Fig. 1. Logo extraction process. From left to right: original
images from Flickr 47 with bounding boxes over logos, resized

logos over white background after the annotation mask has
been applied, original brand logos composing the “synth”

dataset.

A GAN trained with LLD Flickr 47 and LLD synth produced low quality
images, especially due to the high bias that was introduced when copying the
sparse datasets to reach the same number of samples as LLD. Moreover, this
bias was clearly reflected in the output images, since they were very often
represented as combinations of several images from the training datasets, as
depicted in Figure 2.

Since assessing the quality of the generated images is known to be dif-
ficult [13], we manually examined the outputs of all our models and decided
that the best images were obtained with the model trained on LLD, with batch
size of 128, nG = 1, nD = 1, and learning rate of 1e− 04 for 60 epochs. Some
sample logos obtained with this model can be observed in Figure 3. It can be
seen that they present a highly complex structure, which includes large vari-
ations in shapes, colors, lightning, background, color gradients and text. All
further experiments were carried out using this model for logo generation.

3. Backpropagation

GANs transform latent vectors z into images I through their generators,
I = G(z). Since we want to generate several logos similar to an already existing
ones, we need to know the latent vector that drives the generator towards that
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Fig. 2. Output logos (right-side of equal sign) generated as
algebraic combinations between training images (left-side of

equal sign).

Fig. 3. Logos generated using DCGAN model trained on LLD.

specific image. Therefore, we are interested in the backwards process, namely
finding the noise vector that can be used to generate a given logo. This can
be formulated as retrieving z = G−1(I).

However, it is difficult to believe that a perfect match can be obtained [13,
12]. Therefore, we seek for an approximation of the latent vector z′ ≈ z.
Afterwards, we can add a noise vector ε to z′ and generate an arbitrary number
of new logos, similar to the one that we desire I′ = {G(z′ + ε), ∀ε ∈ [−a, a] |
z′ ≈ z}. Choosing a is just a matter of trial and error, and we observed that
a = 1e− 04 produced good enough results, depicted in Figure 4.

Fig. 4. Logo variations starting from the leftmost image (with
black bounding box) obtained by altering the latent vector

with ε.

The reverse mapping, from images to vectors, can be done by backprop-
agating the gradients of the cost functions. We built over the idea of Lipton
and Tripathi [19] to retrieve latent code representations corresponding to the
desired images. The problem formulation, according to them, goes as follows.
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Given a noise vector of size 100, uniformly distributed between −1 and 1,
z ∼ U([−1, 1]100), the generator of a GAN will produce an image G(z). We
generate another random noise vector z′ and its corresponding image G(z′).
Then, we want to force z′ to be as close as possible to z in order to obtain
G(z′) as close as possible to G(z). This is done by minimizing the L2 norm:

min
z′
‖G(z)−G(z′)‖22 (1)

The optimization over z′ is done by gradient descent:

z′ ← z′ − η∇z′‖G(z)−G(z′)‖22 (2)

This optimization is non-convex and it is unknown whether the solu-
tion that achieves the global minimum of 0 is unique. Since there is also
an additional constraint that the noise vector should fall inside the [−1, 1]100

hyper-cube, a modified optimization is proposed, where each value that falls
outside this interval will be clipped at the interval’s closest margin [19]. This
method is called standard clipping :

z′ ← clip(z′ − η∇z′‖G(z)−G(z′)‖22) (3)

The same authors also propose another variant, where instead of replac-
ing the outliers with −1 or 1, they replace them with a random value sampled
uniformly from the [−1, 1] interval, which they called stochastic clipping.

Additionally, we propose another type of clipping, which we call tanh
clipping, where each value that falls outside the [−1, 1] interval is replaced
with its hyperbolic tangent. Having tanh : R→ [−1, 1] ensures that all values
will reside in the required interval and will also eliminate the randomness
introduced by stochastic clipping.

We implemented these 3 types of clipping and ran the backpropagation
algorithm for 200k steps on the same batch of logos. Then, we ran the re-
sulted noise vectors z′ through the generator in order to see how near/far
from the starting logos each clipping method is. Preliminary results shown in
Figure 5 proved that the stochastic clipping is the most effective technique.
Consequently, we chose this for our further experiments.

Since the previously presented attempts at recreating the original logos
did not achieve satisfactory results, we investigated several other hyperpa-
rameter setups, such as different learning rates, number of backpropagation
optimization iterations and momentum for stochastic gradient descent. We
computed the root mean squared error (RMSE) between the original and the
reconstructed logos over an entire batch of logos and illustrate our results in
Table 1.

There is no significant difference between the best performing model and
the second entry from top to bottom from Table 1, meaning that the extra
100k iterations do not bring a noticeable improvement. We used the boldfaced
setup in our next experiments and did not run extensive experiments for setups
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Fig. 5. Backpropagated logos obtained with different clipping
techniques. Top row: original logos; next 3 rows, in order:

standard, stochastic and hyperbolic tangent clipping.

Table 1

RMSE results for different backpropagation setups

learning rate momentum number of iterations RMSE

1e-07 0.75 120k 4090
1e-07 0.9 120k 3640
1e-07 0.9 220k 3976
1e-06 0.75 120k 3860
1e-06 0.9 120k 3750
1e-06 0.9 220k 3600
1e-05 0.9 220k 4519
1e-04 0.9 220k 9981

that did not show promising results. In Figure 6 we present some of the most
conclusive examples of how the backpropagation mechanism worked for several
logos.

Fig. 6. Logos obtained with the help of the backpropagation
mechanism. Top: original logos; bottom: logos obtained after

backpropagating original images through the DCGAN.
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Fig. 7. Results obtained with AVEA. First row: original logos
from LLD; second row: images obtained with the decoder of
the AVAE framework; third row: images obtained with the

generator of the AVAE framework.

It can be seen that the retrieved logos are generally a blurred version of
their original counterparts. This is highly problematic for logos with a com-
plicated texture or logos that contain text. We also examined an alternative
way of reconstructing logos with the help of an Adversarial Variational Au-
toencoder (AVAE) [12]. We present in Figure 7 the results that were obtained
with AVAE on LLD. The quality of these images is similar to that we obtained
in Figure 3 for the generator, but the decoder results in sharper images. Since
our approach could be applied as an add-on to any trained model, we decided
to use it further in our experiments.

4. Logo Detection

As it was mentioned before, assessing the quality of the samples gener-
ated by a GAN is a complicated subject itself. Subjectively, it is fairly simple
to tell the brand that a reconstructed logo represents. Objectively, however,
we discovered that the RMSE will cap at some point due to the nature of the
optimization function. In order to determine how good the reconstruction is,
we setup a logo detection pipeline. Logo detection is, in essence, an object de-
tection problem. Therefore, we applied a consecrated logo detection algorithm,
the Faster R-CNN [6] architecture.

We created a dataset composed of logos generated with the algorithm
explained in this paper, starting from the Flickr 47 training dataset. The steps
are as follows. We extracted each individual logo according to its annotation
mask and resized it to 108×108 pixels, as explained in Section 2. We proceeded
with reconstructing each individual logo with the backpropagation algorithm
explained in Section 3 and obtained their corresponding versions as outputs
of the DCGAN’s generator. Afterwards, we resized the reconstructed logos
back to their original size and applied the annotation masks again, in order
to remove the unnecessary background. Finally, we replaced the original logos
from the Flickr 47 dataset with their reconstructions. The pipeline for this
entire processing is depicted in Figure 8. This dataset was added to the already
existing training dataset, thus obtaining two versions for each image in the
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Fig. 8. Pipeline of the backpropagation and generation
system, with z the retrieved noise vector.

training dataset: one with the original logos and one with the reconstructed
logos.

We ran the logo detection algorithm as follows. First, we pre-trained
the model on the MS-COCO dataset, then we fine-tuned it on Flickr 47 train
dataset and tested it on the Flickr 47 test dataset. We used the mAP@0.5 IoU
metric. This means that a logo is correctly detected if its class label matches
the groundtruth and if its detected bounding box overlaps the groundtruth
bounding box such that the ratio between the surface of their intersection and
the surface of their union exceeds 0.5. We obtained a mAP@0.5 of 0.6019
which is very promising. We also trained another vanilla logo detection model
on Flickr 47 training dataset without any reconstructed images and tested it
on the Flickr 47 test dataset. We present in Figure 9 two examples of how
the training dataset augmented with our algorithm performs better on one
example and worse on another example than its vanilla counterpart.

In Figure 9 the top row presents the logo detection results obtained when
processing a ‘Esso’ billboard. The model trained on the vanilla dataset cor-
rectly detects the ‘Esso’ logo. The model trained on the augmented dataset
also detects the ‘Esso’ logo but it also detects two false positives (‘pepsi text’
and ‘nvidia text’). On the bottom row, the vanilla dataset leads to a false
positive detection (‘guiness text’ above the bottle’s label) and one wrong pre-
diction (‘tsingtao text’ instead of ‘chimay text’ on the glass text), while the
augmented dataset gives a correct prediction. After examining a significant
part of the results, we noticed that errors concentrate mostly on classes which
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Fig. 9. Logo detection results obtained by training on
Flickr 47 training dataset (left column) and on the augmented

dataset (right column)

contain only text, such as ‘Pepsi’ and ‘Google’ in Figure 6. This was expected
since these classes are very different from what is usually found in the logo
dataset that was used to train the DCGAN. Moreover, the text is often tilted,
occluded and in poor lightning conditions or barely visible at all.

There are numerous factors that should be taken into consideration when
examining the results. First of all, the size of the logos in the original images
plays an important role. The DCGAN is limited to generating fixed size logos,
which we set to 108× 108 pixels, as mentioned in Section 2. This means that
logos which are originally larger than this will be downscaled and their re-
constructed counterparts will be upscaled through interpolation. As there are
no lossless interpolation algorithms, the image’s quality will decrease when its
size is enlarged. Next, the DCGAN limits the extent to which the backprop-
agation algorithm can be applied, because it contains several layers (batch
normalization, dropout), due to which it is difficult to perfectly recover the
latent vector through gradient backpropagation. Moreover, we notice a signif-
icant difference between the dataset that was used to train the DCGAN, i.e.,
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LLD, and the dataset that we used to reconstruct logos, Flickr 47. We reckon
that this factor bears the most responsibility for the inability to correctly re-
construct complex images. By complex we mean images that are affected by
poor lightning, occlusion and whose content is highly complex as compared to
the training dataset.

5. Conclusions

In this paper we presented a logo generation algorithm based on GANs
and gradient backpropagation. We trained a DCGAN model to generate ran-
dom 108×108 pixels logos starting from the LLD dataset. Then, we extracted
in-the-wild logos from the Flickr 47 dataset. These logos were backpropagated
through the DCGAN, we extracted their latent code representations and then
used these noise vectors to guide the DCGAN’s generator to output similar
looking logos. These new logos were used to replace their original counterparts
and we ran a logo detection pipeline to validate our processing.

This pipeline yielded a mAP@0.5 of 0.6019 which is very promising, espe-
cially given that this framework can be applied to any other deep architecture.
Its strength comes from the fact that it is not restricted to a particular model.
This means that we can use frozen models without having to change their un-
derlying architectures. As a consequence, this provides an alternative dataset
augmentation method to already existing classical approaches.

For this algorithm to properly work, several conditions need to be satis-
fied at once: the training dataset for the GAN’s generator should be similar to
the one that we wish to reconstruct, the datasets should be diverse enough, so
that not only algebraic combinations of training images are encountered (see
Figure 2), and the images should be of similar size, with only small variations
between them. In conclusion, provided that these conditions are fulfilled, the
proposed method represents an appealing solution for dataset augmentation.
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