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Abstract—In this work, we consider the problem of person
search, which is a challenging task that requires both per-
son detection and person re-identification run concurrently. In
this context, we propose a person search approach based on
deep neural networks that incorporates attention mechanisms
to perform retrieval more robustly. Global and local features
are extracted for person detection and person identification,
respectively, boosted by attention layers that allow the extraction
of discriminative feature representations, all in an end-to-end
manner. We evaluate our approach on three challenging data
sets and show that our proposed method improves the state-of-
the-art networks.

Index Terms—person search, person detection, person re-
identification, visual attention layers.

I. INTRODUCTION

Person search is a relatively new image retrieval task with
increasing attention in the computer vision community [1],
[2]. Given a query image, person search aims to localize the
specific person from the given query in a gallery of images.
It is an extension of the classical person re-identification
classification problem [3], [4], which is based on two as-
sumptions: (i) the spatial coordinates of each person from the
gallery are given, and (ii) the spatial coordinates are perfectly
aligned. However, in practice, these two assumptions do not
hold. In this context, person search is more challenging, as
it requires both person detection and re-identification, concur-
rently. Furthermore, aside from the errors introduced by the
changes in illumination, camera viewpoint, background, and
occlusions, that are generally considered influential problems
for the person re-identification task, other factors need to
be considered for the person search problem that deeply
affects the retrieval quality. These include miss-alignments,
miss-detections, false alarms or small changes in person’s
appearance and clothing attributes, across the query and the
images collection. We show the differences between person
search and person re-identification in Figure 1.

To date, only a few methods have been proposed to address
person search [5]–[8]. Typical methods divide the problem into
two categories: person detection and person re-identification,
and tackle each task sequentially, via a two-stage strategy
based on separate supervised algorithms. For the former,
person detection is achieved by densely scanning the image
in a sliding window fashion [9]–[11] or by using a proposal
mechanism and leveraging CNNs to classify a sparsified set
of proposals [12]–[14]. For the latest, different metric learning
methods are employed to learn an embedding space that

Fig. 1: Demonstration of the search process for one gallery
image for the person re-identification (a), and person search
(b), problems. The red boxes indicate the wrong matched
results while the green box represents the truly matched
person.

cluster images corresponding to the query by minimizing
the intra-person distance while maximizing the inter-person
distance [15], [16], or different classification set-up [17]–[19].

In the last years, deep neural networks have become in-
creasingly predominant choices for person localization and
re-identification. One of the consolidated findings of state-of-
the-art deep learning architectures [20]–[22] is that they are
able to learn invariant deep embeddings, with superior repre-
sentation capabilities for high-dimensional data, and jointly,
with their classifying capabilities, dramatically outperforming
conventional descriptors and classifiers.

In this article, we take advantage of the deep learning ad-
vancements, and propose an end-to-end person search frame-
work that integrates multiple DNN architectures. Specifically,
given the whole scene, and the query image, we leverage a per-
son proposal network for person candidate detection to extract
the proposal locations of the persons. Then, a re-identification
network extracts discriminant visual representations between
the query and each proposal to retrieve the results. It is an
improvement of the work in [5] via the use of visual attention.

The remainder of the paper proceeds as follows. We first
position our work in the literature, discussing related ap-
proaches and concepts, in Section 2. Then, we present our



proposed end-to-end person search system, in Section 3, by
examining three types of CNNs used in constructing the
framework. Experimental setup, and the analysis of the results
are presented in Section 4 and Section 5, respectively. Lastly,
Section 6 presents our conclusions and discusses future work.

II. PREVIOUS WORK

Considering that our person search framework is com-
posed of two stages: (i) person detection, and (ii) person
re-identification, we first review the advances in both fields.
Afterward, we review existing works on person search, which
is a recently proposed topic.

A. Person Detection

Person detection is canonical object detection, an exten-
sively studied field over the past few decades, that became
a testbed for the leading deep convolutional neural networks.
In this context, the region-based CNN [12] and feature pyra-
mid networks [23] can be considered milestones for object
detection, due to the immense detection performance they
achieved on this task, over the traditional methods such as
the deformable part model (DPM) [24].

The Region-based Convolutional Neural Networks (R-
CNNs) have become very successful due to their low cost
that resulted trough sharing convolutions across proposals. It
is based on a bottom-up grouping and saliency cues selective
search method that reduces the cost and the searching space
in object detection. The next iteration, Fast R-CNN [25],
further improved the results using very deep networks, by
performing a single convolution operation per image, instead
of performing for each region proposal. Finally, in order to
have an almost cost-free region proposals prediction, Faster R-
CNN was proposed in [26] consisting of two models, namely
an RPN and a Fast R-CNN model, where the first generates
object proposals which are fed into the Fast R-CNN, and
the latest refine the proposals with the goal of increasing
their quality, leading to an overall increased object detection
accuracy.

Other object detectors, such as Feature Pyramid Network
(FPN) [27] allow for the detection of objects at different scales.
In FPN, the network builds a multi-scale feature pyramid,
with each level of the pyramid being able to detect objects
at different scales.

B. Person Re-identification

Person re-identification addresses the problem of searching
specific persons across spatially non-overlapping cameras, by
estimating visual similarities between different probe-gallery
pairs. Various data sets [2]–[4], [28], [29] have been proposed
to support the research of the re-identification problem. Exist-
ing person re-identification methods focus either on manually
or automatically designing discriminative features [16], [17],
[30], [31] for representing person images, or designing a
learning distance metrics [32]–[36] for measuring similarity
between person images. These include novel deep architec-
tures [15], [16] that combines both of the practices.

For instance, Song et al. [37] proposes a domain gener-
alizable person re-identification model that maps the image
with its identity classifier, bypassing the need of updating the
model for the target domain. Wang et al. [38], proposed a deep
network that tackles the misalignments and color differences
across camera problems. The authors in [39] proposed a
weakly-supervised framework that matches a person with
untrimmed video data. Wu et al. [40] developed a Multi-
teacher adaptive similarity distillation framework that uses
lightweight models to reduce the testing computation. The
framework uses multiple teacher-single student settings and
proposes an adaptive knowledge aggregator to measure the
teachers contributions, achieving performances comparable
to state-of-the-art unsupervised and semi-supervised Re-ID
methods.

C. Person Search

Person search is a relatively new challenge that consists
of both pedestrian detection and person re-identification to
run concurrently, in a coherent system. In this context, Xu
et al. [41] firstly introduced the problem of person search in
images using human body appearance, in contrast to the ex-
isting works on people detection and person re-identification.
Xiao et al. [5] further proposed the first end-to-end person
search framework based on body and parts regions in order
to fully understand the pedestrian representations. Munjal et
al. [7] showed the benefits of end-to-end optimization by
proposing QEEPS, a query-guided person search for online
instance matching via a query-guided Siamese squeeze-and-
excitation network.

In this paper, we present an end-to-end trainable deep neural
network for person search. The contribution beyond state of
the art can be summarized with the following: (i) we integrate
attention mechanisms in the stem CNN to train the network to
attend to representative parts in pedestrain patches. This allow
the network to focus on discriminative regions, e.g., face and
body parts, or on different accessories such as glasses, bags,
etc.; (ii) we perform spatial transformations to increase the
robustness of the system to spatial variances.

III. PROPOSED METHOD

In this section, we provide a detailed description of the
proposed person search network. In addition, we study, test,
and integrate attention layers in the architecture, to improve
the predictive power of the algorithm. The methodology for
performing person search in an unified way, consists of three
parts, namely: (i) global features, represented by low-level
features extracted from the whole input image, (ii) region
proposals for transforming low-level features into pedestrian
proposals, and (iii) local features represented by discriminative
features corresponding to the identities in the image.

For the backbone of our architecture, we have implemented
and tested three popular deep neural networks (DNNs) from
the literature, namely GoogleNet [20], ResNet50 [21], and
DenseNet101 [42]. For reproducibility purposes, we have se-
lected the best performer network as the base of the framework
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Fig. 2: Illustration of the unified person search architecture.
The framework extracts low-level features via a set of 3 dense
blocks with 6, 12, and 24 dense layers respectively, that are
then transformed into pedestrian proposals and finally fed to an
identification network based on a dense block with 16 layers
which extracts down-sampled representative features of the
identity.

in Figure 2. The same topology for connecting the models was
used for the two others base DNNs architectures.

Global features. Global features represent a generalization
of a whole image, revealing contour and shape representations
of the objects in the scene, allowing us to discern between
different objects, and background. Given as input an RGB
scene image of height and width multiples of 32, we first
perform an initial convolution and max-pooling with 7 × 7
and 3 × 3 kernel sizes, followed by a stem CNN composed of
3 dense blocks with 6, 12, and 24 dense layers respectively,

with a growth rate of 32. Each dense block is an iterative
concatenation of previous feature maps so that each layer
has direct access to the gradients from the loss function and
the original input signal. The stem CNN will produce 512
channels of features maps, which have 1/16 resolutions of the
input image. Then, spatial transformations are applied to the
generated features to increase the robustness of the system to
spatial variances.

Region proposals. Region proposals represent candidate
spatial coordinates of the objects in the scene. We follow the
methodology described in [5] to transform feature maps in
spatial coordinates by building a pedestrian proposal network
to detect person candidates. We achieve this by training a
SoftMax classifier to discern whether the features, mapped to
a set of 9 anchors of sizes 128×128, 256×256, 512×512 with
height/width ratios of 1:1, 1:2 and 2:1 respectively, represent a
person or not. In addition, we use a linear regressor to further
refine the respective locations using the protocol described
in [43]. Therefore, the multi-task loss function accommodates
the losses of classification and bounding box regression:

L = Lcls + Lreg (1)

The loss function for an image is described by the following
equation:

L ({pi} , {ti}) =
1

Ncls

∑
i

Lcls (pi, p
′
i)+

λ

Nreg

∑
i

p′i × Lsmooth
1 (ti − t′i)

(2)

where pi represents the predicted probability of anchor i to be
an object, p′i represents the ground truth label of the anchor i,
ti represents the predicted spatial coordinates of the object i, t′i
represents the ground truth spatial coordinates for the object
i, Ncls and Nreg represent the normalization term set to a
mini-batch and to the number of anchor locations (∼2,400),
respectively, and λ represents a weighted parameter for Lcls

and Lreg, set to be 10. Lsmooth
1 is the smooth L1 loss.

The log loss function over two classes Lcls, predicting a
sample being a target object or background is computed as
following:

Lcls (pi, p
′
i) = −p′i × logpi

− (1− p′i)× log(1− p′i) (3)

Local features. To discern between identities, we further
extract local features from pedestrian image patches generated
by the region proposal network. In this context, the predictions
represented by the spatial coordinates, are fed into an RoI-
Pooling layer by pooling a 1, 024 × 14 × 14 region for
each proposal and then, we pass the predicted proposal to an
identification network. The identification network is composed
of a dense block with 16 dense layers, with a growth rate of
32. These are then followed by a global average pooling layer
which outputs a 2,048 dimensional features vector representing
the individual features of the identity.

To further improve the precision of the architecture, we
include an attention mechanism before the identification net-
work. The integrated attention mechanism parameters are



learned throughout the end-to-end training, helping the net-
works to focus on key elements of the input. In this regard,
we have selected a soft (stochastic) attention setting, where the
mask of values is constrained to be between 0 or 1, therefore,
ignoring non-discriminant features, and training the neural
network to attend to specific parts of the input. Finally, the
identification is supervised using the OIM loss [5].

IV. EXPERIMENTAL SETUP

We evaluate our proposed method on three large-scale
end-to-end person detection and re-identification benchmarks,
namely: Person Re-identification in the Wild [2], CUHK03
[4], and CUHK-SYSU [5].

A. Data sets

Person Re-identification in the Wild (PRW) contains
34,304 images of 932 identities (avg. 36.8 per identity), and
8,806 images of distractors, captured by six cameras.

CUHK03 contains 14,097 images of 1,467 person recorded
with six surveillance cameras with each identity captured by
two disjoint camera views (avg. 4.8 images in each view).

CUHK-SYSU contains 18,184 images of 8,432 identities
(avg. 11.4 images per identity) recorded from two data sources,
namely, from point-and-shoot cameras capturing street snaps
around an urban city, and from movies with pedestrians.

B. Implementation Details

Our framework is implemented with the pytorch [44] frame-
work and integrates the py-faster-rcnn repository [26], using
the parameters values proposed by the authors. In the imple-
mentation process, we study and test a set of good practices
for training DNNs. Specifically, we implement a set of data
augmentation techniques for images, i.e., contrast changes,
hue/saturation, affine transformations, perspective transforma-
tions changes, blurring, gaussian noise, dropout of regions,
cropping/padding, and perform transfer learning, by using the
ImageNet-pretrained models for parameters initialization, with
the goal of improving the predictive power of the proposed
algorithm.

The framework takes input images resized to have at least
900 × 1,500 pixels either on the short side or the long side.
Then, the detection image patches are re-scaled to 256 ×
128. In the training stage, the learning rate is initialized to
0.001, and dropped to 0.0001 after 25 epochs, until the model
converges at 50 epochs. The optimization algorithm is the
stochastic gradient descent (SGD) with the Softmax loss and
Smooth L1 loss for detection, whereas for the identification,
we use the OIM [5] loss function with a circular size of
2,048. In both training and testing, a detected bounding box is
considered correct if the Intersection over Union (IoU) score
with the ground truth bounding box is bigger than 0.75.

C. Evaluation

For each data set, we adopted the original evaluation pro-
tocol that the data set provides, namely the mean average
precision (mAP). Finally, the results are obtained in a single-
query setting, without re-ranking.

TABLE I: Effectiveness of the pedestrian detection module
expressed in AP (IoU > 0.75).

Method PRW CUHK03 CUHK-SYSU
GoogleNet 0.755 0.818 0.764
ResNet50 0.794 0.845 0.776
DenseNet121 0.847 0.862 0.792

TABLE II: Effectiveness of the person search framework
expressed in mAP (IoU > 0.75).

Method PRW CUHK03 CUHK-SYSU
GoogleNet 0.263 0.668 0.685
ResNet50 0.327 0.714 0.753
DenseNet121 0.335 0.703 0.778
GoogleNetatt 0.281 0.694 0.692
ResNet50att 0.347 0.721 0.775
DenseNet121att 0.358 0.717 0.783

V. RESULTS AND DISCUSSION

We compare our proposed person search framework (with
or without using attention mechanisms) using three conse-
crated deep networks, namely GoogleNet, ResNet50, and
DenseNet121 as the backbone of the framework, to evidentiate
their utility in person search. The results are summarized
in Table II. Comparing the baseline models, DenseNet121
outperforms the two other networks on two data sets out of
three, namely on PRW and CUHK-SYSU, with an mAP score
of 0.335 and 0.778, respectively. The best performer on the
CUHK03 data set is ResNet50 with an mAP score of 0.714.
Furthermore, we observe that the trend is valid also for the
variants with attention mechanisms, with DenseNet121ATT
achieving an mAP score of 0.358 and 0.783 on the PRW and
CUHK-SYSU data set, and ResNet50, with an mAP of 0.721
on the CUHK03.

Analyzing the results with respect to attention mechanism
for the best performers on each data set, we can observe
that DenseNet121att achieved a boost in performance from
0.335 to 0.358 and from 0.778 to 0.783 on the PRW and
CUHK-SYSU data sets, respectively. On the CUHK03 data
set, ResNet50att increased from 0.714 to 0.721. These re-
sults indicate the advantage of our proposed framework as
the attention mechanisms constantly outperform the baseline
variants on all three data sets.

When building a person search system, an important ques-
tion needs to be addressed, namely: How does the detector
performance affect the overall performance? In this context,
we analyze the detection precision impact on person search.
Intuitively, better detector results advocate a higher overall ac-
curacy. Table I presents the results achieved by the GoogleNet,
ResNet50 and DenseNet121 networks. We can observe that
the detection accuracy is consistent with the person search
performance evaluated using the IoU > 0.75 criterion, with
DenseNet121 achieving the best results with an AP score of
0.847, 0.862 and 0.792 on the PRW, CUHK03 and CUHK-
SYSU data sets, respectively.



VI. CONCLUSIONS

In this paper, we have presented a unified framework for
person search based on deep neural networks. In this context,
we have tested three popular DNNs namely, GoogleNet,
ResNet50, and DenseNet121, as the backbone for the entire
framework, enhanced with attention layers to furthe improve
the predictive capabilities of the proposed approach. In the
training phase, we have also included a set of good practices
for training deep networks targeting image processing and
transfer learning. Extensive experiments show that the atten-
tion mechanism consistently improves the overall performance
of the system, achieving a mAP score of 0.358, 0.721, and
0.783 on the PRW, CUHK03, and CUHK-SYSU data sets,
respectively. In future work, we will extend the attention mech-
anisms in the detection stage, to better cope with occlusions
and perform retrieval more robustly.
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