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Abstract—CCTV systems bring numerous advantages to se-
curity systems, but they require notable efforts from human
operators in case of alarming events in order to detect the precise
triggering moments. This paper proposes a system that can
automatically trigger alarms when it detects abandoned luggage,
detects the person that left the baggage and then tracks the
suspicious person throughout the perimeter covered by a CCTV
system. The system is based on Mask R-CNN and has been
tested with several backbone configurations. We evaluate each
subsystem independently on datasets specific for their task. The
network model proves to be robust enough to carry on all of the
three different tasks as demonstrated by tests.

Index Terms—object detection, unattended baggage detection,
video surveillance.

I. INTRODUCTION

Modern days saw an increase in the rate of events that are
intended to harm civilians through the means of terror acts.
One such method is creating home-made explosive devices
and deploying them in strategic places, such as crowded
areas. It is customary for suspects to hide and transport these
devices in ordinary packages, e.g., backpacks, suitcases, bags
etc. Airports also pay a great deal of attention to unattended
baggage as they have to deal with them on a regular basis. In
such cases it is critical to find the baggage’s owner in a short
time to limit the potential threat and panic that it may cause.

Most such events are caught on camera so it becomes
a retrieval problem for the authorities to extract the exact
sequences concerning the event from the vast amount of feeds
that the cameras capture at each moment. However, it becomes
extremely tedious to manually analyze the entirety of the
recorded sequences that capture the moment when an event
occurred. This process can last from minutes up to several
days, slowing down investigations in moments when time is
of the essence. One such tragic event took place in Boston,
Massachusetts in 2013, when it took the police officials more
than 4 days to identify the suspects of a bomb planted in a
public place. Having at hand an automated, real-time, detection
system would have been definitively more effective.

This paper proposes a system that manages to quickly
identify abandoned luggage, the suspected person who placed
it there and track the person’s path on a CCTV system. To
the best of our knowledge, this is the first system to perform
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all these actions in an end-to-end system. The use-case of this
system is represented by a human operator monitoring live
feeds from a large number of surveillance cameras. We aim to
help the operator by detecting unattended objects and finding
the baggage owner in a short amount of time.

As Tripathi et al. [1] point out, most approaches in the
literature [2]–[5] focus on semantically separating the back-
ground from the foreground and then tracking both static and
moving objects. Unlike them, we propose a system composed
of three modules: an object detection component, a suspect
detection subsystem and a person re-identification component.
In order to limit the resources needed to run the entire
system we decided to use the feature extraction part from
the object detection system to run person re-identification as
well. Thus, our system successfully performs all three tasks
without any additional cost. We evaluate the average precision
and inference time of the object detection system on the
MS-COCO dataset [6] and the accuracy of the person re-
identification system on CUHK03 dataset [7].

The rest of the paper is structured as follows. In Section II
we present the current progress in the object detection field,
in Section III we explain our system’s architecture, in Sec-
tion IV we give details about the practical implementation, in
Section V we discuss the results obtained with this algorithm
and in Section VI we present the conclusions.

II. RELATED WORK

The modern history of object detection started in 2014,
when Girshick et al. [8] proposed the use of Region-based
Convolutional Neural Nets (R-CNN) for accurate detection.
This was done by proposing several regions of different shapes
and sizes from an image and classifying their content with
convolution layers. However, the feature extraction had to be
run independently on each extracted region.

He et al. [9] proposed SPP Net, which acts as an improved
R-CNN by introducing adaptively-sized pooling with spatial
pyramid pooling and computing feature volume only once.
Later progress from Girshick saw Fast R-CNN [10] bring a
performance increase to R-CNN by first performing feature
extraction and then proposing regions for object classification.

Faster R-CNN [11] improved on previous version by addin a
region proposal network in charge for simultaneously predict-
ing object bounds and objectness scores at each position. This



netowrk uses already computed features from the detection
network. Thus, its addition to the system’s pipeline is almost
cost-free.

Redmon et al. [12] proposed a different approach in YOLO
(You Only Look Once). Their idea was to divide the image
into a mesh of 7x7 pixels cells. Each cell goes through the
object classifier and a regressor merges the cells such that
objects are fully bounded by a rectangle box.

The Single Shot multibox Detector (SSD) [13] is a network
that generates scores for the presence of each object category
in each default box and produces adjustments to the box to
better match the object shape. Moreover, the network com-
bines predictions from multiple feature maps with different
resolutions to naturally handle objects of various sizes.

Lastly, Mask R-CNN [14] extends Faster R-CNN to In-
stance Segmentation. Additionally to object detection, the net-
work also predicts class-specific object masks. This approach
also solves the misalignment problem of the RoI pooling
layer by introducing the RoI align layer which uses bilinear
interpolation to compute the exact values of the input features.
They also explore different backbone architectures, such as
Feature Pyramid Network (FPN) [15] and ResNet [16] to
obtain state of the art results for object detection.

A similar work to ours was conducted by Intel [17], but
they used Mask R-CNN only to detect objects. This limitation
can be found throughout the literature, where systems are in
charge solely with detecting abandoned objects. Our method,
however, goes beyond this point, up to retrieving images of
the unattended object and of the person that left it there.

III. SYSTEM ARCHITECTURE

In this section we provide information on the proposed
system’s architecture. As our approach relies on Mask R-CNN
for object detection and feature extraction, we will briefly
present its working principle. The Mask R-CNN architecture
can be split into two main stages: the region proposal network
(RPN) and the network head, as illustrated in Fig. 1. We
explain these two stages separately.

In the region proposal stage, each image is passed through
a backbone feature extractor. This is usually ResNet but it can
be replaced by any other multi-stage architecture. These stages
are marked as C1, ..., C5 in Fig. 1 and they represent feature
maps of different sizes, computed in a bottom-up approach.
These are also used in the feature pyramid to predict the
feature maps P5, ..., P2 in a top-down approach. Next, several
anchors, of different shapes and sizes are proposed for each
feature map. An objectness score is assessed for each anchor
and, if an object is detected, i.e., the objectness score is above
a given threshold, it sends the current anchor to the RoI Align
module, along with a RoI adjustment. The RoI Align block
outputs several feature map regions where objects have been
detected, concluding the region proposal stage.

The proposed regions now enter the second stage, the
network head. This, in turn, is divided into 2 additional
branches. One branch is in charge with computing the object
mask by computing an individual mask for each type of object

Fig. 1. Mask R-CNN architecture.

that the system is trained to detect. In parallel, the network
head also performs classification and bounding box regression
for the proposed region. After the class has been predicted,
the network head selects the mask corresponding to the given
class and it assigns it to the detected object.

As mentioned before, we used this pipeline to extract object
features with the help of the RPN, which were used to drive all
the 3 stages of our system. In addition, the masks, bounding
boxes and class predictions from the network head were also
used to completely describe the detected objects and offer a
better visualization of the results.

IV. IMPLEMENTATION DETAILS

Our system uses the Mask R-CNN architecture, trained on
MS-COCO 2017 dataset [6], containing approximately 330k
images, out of which 200k are labeled, spanning a total of 80
different object classes. Out of these classes, we selected only
those that impact our system directly and discard the rest. We
will now describe in detail the setup that we used for each of
the 3 modules and how they interact.

A. Unattended Baggage Detection

The unattended baggage detection algorithm makes use of
Mask R-CNN’s object detection mechanism. We aim to detect
only a subset of classes: ‘person’, ‘backpack’, ‘handbag’ and
‘suitcase’. The last 3 classes have been grouped under a
general class regarded as baggage. We labeled an object as
unattended when there is no person in its immediate vicinity,
meaning that the object’s bounding box does not intersect any
detected person’s bounding box. Empirically, this proved to be
a good compromise for the problem at hand.

Since our system is designed for security purposes, it is
critical that no unattended object is missed by the automatic
detection mechanism and we, therefore, favor a very low false



negative rate by setting a lower detection threshold of 0.5. We
keep a standard threshold for non-maximum suppression of
0.7. Inference time is also important for our system given that
its purpose is to assist first responders.

B. Suspect Detection

We then use the feature vector that Mask R-CNN computed
and search for the exact abandoned baggage through all of
the available images and rank these images in descending
order of feature vector similarity, under the condition that there
exists in the image a person whose bounding box intersects the
baggage’s bounding box. We test for similarity by using a sim-

ple Euclidean distance d (fq, fx) =
√∑N

i=1 (fq(i)− fx(i))
2.

where fq is the feature vector of the queried baggage, fx is the
feature vector of a baggage whose bounding box intersects that
of a person’s and N is the undimensional feature vector’s size.
Afterwards, we run a ranking of these distances and display
the images where it is most likely that the abandoned baggage
was detected in the presence of a person and deem this person
to be a suspect.

C. Suspect Re-identification

In the next step, our system starts from the suspect that was
just detected and searches for him in the dataset. We used
the same procedure to search for the person as we used for
the baggage. This time, however, we performed a per-camera
ranking and obtain for each camera a set of images where
the suspect was detected. This is motivated by the fact that
we want to track this person’s path throughout the surveilled
perimeter and it is more helpful to see the most similar image
of the subject that each camera managed to record, rather than
the best matching images from the combined cameras which
might end up to come from the same camera.

A very important aspect of our approach is that we are able
to compare objects of different sizes. As seen in Figure 2
a person can have a very small size (30 × 60 pixels) on
one camera and a very large size (210 × 500 pixels) on
another camera, depending on the distance between them
and the recording device. This dimension difference becomes
irrelevant since we are comparing the object feature vectors,
which are of fixed length.

Additionally, we created a small dataset for demonstration
purposes. We gathered 1 hour of images recorded by our
research center’s CCTV system. We restricted the observed
area to the basement, ground floor and the exterior of the
building. The motivation is that we wanted to capture all
possible entrances, the surrounding perimeter and some addi-
tional indoor information. We established a scenario where one
person would abandon a backpack on the hallway and leave.
Several other people carrying backpacks were captured in this
dataset. We downsampled the recordings to only one frame/s
and, since the cameras are equipped with motion sensors and
only record when they detect movement, our gathered dataset
is very small (120 images). In addition, we created a demo
graphical user interface to aid a human operator.

TABLE I
PERFORMANCE OF DIFFERENT OBJECT DETECTION MODELS

Backbone Bbox
AP@IoU=0.75

Inference time
(s/image)

R50-C4 1x 35.7 0.392
R50-DC5 1x 37.3 0.408
R50-FPN 1x 37.9 0.228
R50-C4 3x 38.4 0.398
R50-DC5 3x 39.0 0.396
R50-FPN 3x 40.2 0.231
R101-C4 3x 41.1 0.482
R101-DC5 3x 40.6 0.474
R101-FPN 3x 42.0 0.308
X101-FPN 3x 43.0 0.591

V. RESULTS

We performed tests on several backbone architectures and
report average precision for Intersection over Union (IoU)
score higher than 0.751 along with the time it takes for each
architecture to process one image in Table I. The backbone
architectures should be read as follows:

• R/X: means that ResNet or ResNeXt, respectively has
been used as an underlaying architecture;

• 50/101: the architecture consists of 50 or 101 layers;
• C4/DC5/FPN: 3 different backbone combinations as fol-

lows. C4: uses ResNet conv4 backbone with conv5 net-
work head, the same as in Faster R-CNN. DC5: uses
ResNet conv5 backbone with dilated convolutions in
conv5 layer. FPN: uses ResNet + FPN backbone with
standard convolutions.

• 1x/3x: models trained with a different number of COCO
epochs (~12 or ~37, respectively). 1x models have sig-
nificantly lower performance than their 3x counterparts
as it can be seen in Table I.

We obtained the presented inference times while performing
the detection on a single NVIDIA QUADRO M4000 GPU. We
consider that in the given circumstances it is better to opt for
a model which sacrifices a part of the detection accuracy in
favor of a faster inference time. The detection accuracy loss
can be overcome by setting a lower detection threshold to
force additional proposals and decrease the false negative rate.
Decreasing inference time is, however, far more difficult. In
our use-case a fast response is a critical aspect of the system.
Therefore, we select the R50-FPN 3x as our go-to model in
the proposed system.

The person re-identification component was tested on the
CUHK03 dataset and obtained a top-1 accuracy of 70.8%.
The same technique was used by Xiao et al [18]. In addition
to the ResNet50 architecture they also tested an Inception
version [19], but the higher number of parameters also made
the inference slower, which was detrimental for our system.

During our demonstration we managed to capture all events
that are of interest: we could successfully detect the abandoned
baggage, the person that left it there and then detect that

1Detection performance from Facebook Research Object Detection
MSCOCO baseline: https://github.com/facebookresearch/detectron2/blob/
master/MODEL ZOO.md.



Fig. 2. From left to right: abandoned object that triggered an alarm, detected suspect leaving the baggage, suspect leaving the building, suspect interacting
with another person. The person in the third image is 210× 500 pixels in dimension, whereas in the fourth image it is of 30× 60 pixels.

person’s presence on individual cameras. Results can be seen
in Figure 2. Furthermore, we managed to extract important
moments such as when the person entered the building while
carrying on the backpack and when the person left the
building, without the backpack. This proves very useful in
narrowing down the time interval during which the suspected
person was inside the building. Moreover, we can see the
people that the suspected person interacted with, which could
increase the ramification of our scenario even further.

VI. CONCLUSIONS

In this paper we presented an unattended object detector that
can be deployed on CCTV systems. Our approach is composed
of 3 modules, each designed to perform a different task:
unattended object detection, detect the object’s owner and find
that person’s presence on the CCTV cameras. We used Mask
R-CNN to perform the detection and computed similarities on
the extracted feature vectors that the network extracted. We
gathered a small dataset for our experiment simulating one of
the practical use-cases, built a user interface for operators and
proved that the system works as intended in the proposed use-
case. We evaluated the system and chose the architecture that
offered the best trade-off between performance and inference
time.
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